Table P-2: U.S Greenhouse Gas Inventory Source Categories Based on Tier 1 Approach

Table P-2: U.S Greenhouse Gas Inventory Source Categories Based on Tier 1 Approach								
		2000 Emissions	Key Source					
	Direct	(Tg CO ₂	Flag?					
IPCC Source Categories	GHG	Eq.)	riag:	Criteria ^a	Comments			
Energy		•						
CO ₂ Emissions from Stationary Combustion - Coal	CO_2	2,030.1	✓	L, T	All years			
CO ₂ Emissions from Stationary Combustion - Oil	CO_2	640.7	✓	L, T	All years			
CO ₂ Emissions from Stationary Combustion - Gas	CO_2	1,162.9	✓	L, T	All years			
CO ₂ Emissions from Stationary Combustion –	CO_2	+		ŕ	,			
Geothermal								
CO ₂ Emissions from Natural Gas Flaring	CO_2	6.1						
Non-CO ₂ Emissions from Stationary Combustion	CH_4	7.5						
Non-CO ₂ Emissions from Stationary Combustion	N_2O	14.9						
Mobile Combustion: Road & Other	CO_2	1,503.2	✓	L, T	All years			
Mobile Combustion: Road & Other	CH_4	4.1			•			
Mobile Combustion: Road & Other	N_2O	55.7	✓	L	All years			
Mobile Combustion: Aviation	CO_2	196.5	✓	L	All years			
Mobile Combustion: Aviation	CH_4	0.2			•			
Mobile Combustion: Aviation	N_2O	1.9						
Mobile Combustion: Marine	CO_2	89.9	✓	L, T	All years			
Mobile Combustion: Marine	CH_4	0.1			•			
Mobile Combustion: Marine	N_2O	0.6						
Fugitive Emissions from Coal Mining & Handling		61.0	✓	L, T	All years			
Fugitive Emissions from Oil & Gas Operations	CH_4	138.2		L, T	All years			
Indirect CO ₂ Emissions from CH ₄ Oxidation	CO_2	26.3		Ť	,			
International Bunker Fuels ^b	Several	101.2	✓	Q				
Non-Energy Use of Fossil Fuels ^b	CO_2	409.6	✓	Q				
Industrial Processes								
CO ₂ Emissions from Cement Production	CO_2	41.1	✓	L	Level in 1991, 1993 - 1997			
CO ₂ Emissions from Lime Production	CO_2	13.3						
CO ₂ Emissions from Other Industrial Processes	CO_2	107.6	✓	L, T	All years			
CH ₄ Emissions from Other Industrial Processes	CH_4	1.7						
N ₂ O Emissions from Adipic Acid Production	N_2O	8.1	✓	T, Q				
N ₂ O Emissions from Nitric Acid Production	N_2O	19.8						
PFC Emissions from Aluminum Production	PFCs	7.9	✓	T				
SF ₆ Emissions from Magnesium Production	SF_6	4.0						
SF ₆ Emissions from Electrical Equipment	SF_6	14.4	✓	T, Q				
HFC, PFC, and SF ₆ Emissions from	Several	7.4	✓	Q				
Semiconductor Manufacturing								
Emissions from Substitutes for Ozone Depleting Substances	Several	57.8	✓	L, T	Level from 1997 - 2000			
HFC-23 Emissions from HCFC-22 Manufacture	HFCs	29.8	✓	L, T	Level in 1990,			
A qui qui tumo					1992, 1996, 1998			
Agriculture	CH	122.0	✓	тт	A 11			
CH ₄ Emissions from Enteric Fermentation in	CH_4	123.9	•	L, T	All years			
Domestic Livestock	CH	27.5	1	Ι. Ο	I1 : 1005			
CH ₄ Emissions from Manure Management	CH ₄	37.5		L, Q	Level in 1995			
N ₂ O Emissions from Manure Management	N_2O	17.5		т	A 11			
Direct N ₂ O Emissions from Agricultural Soils	N_2O	217.8		L	All years			
Indirect N ₂ O Emissions from Nitrogen Used in	N_2O	79.8	•	L	All years			
Agriculture	CII							
CH ₄ Emissions from Rice Production	CH ₄	7.5						
CH ₄ Emissions from Agricultural Residue Burning	CH ₄	0.8						
N ₂ O Emissions from Agricultural Residue Burning	N ₂ O	0.5						

Waste					
CH ₄ Emissions from Solid Waste Disposal Sites	CH_4	203.5	✓	L, T	All years
CH ₄ Emissions from Wastewater Handling	CH_4	28.7			
N ₂ O Emissions from Wastewater Handling	N_2O	8.5			
CO ₂ Emissions from Waste Incineration	CO_2	22.5	\checkmark	T	
N ₂ O Emissions from Waste Incineration	N_2O	0.2			

+ Does not exceed 0.05 Tg CO₂ Eq.

a Qualitative criteria.
b Emissions from these sources not included in totals.

Notes: Sinks (e.g., LUCF, Landfill Carbon Storage) are not included in this analysis. The Tier 1 approach for identifying key source categories does not directly include assessment of uncertainty in emissions estimates.